a2 United States Patent

Wallace et al.

US009460025B1

(10) Patent No.:
45) Date of Patent:

US 9,460,025 B1
Oct. 4, 2016

(54) MAINTAINING A SEPARATE LRU LINKED 2013/0173853 Al 7/2013 Ungureanu et al.
LIST FOR EACH THREAD FOR 2014/0310473 Al 10/2014 Bilas et al.
MULTI-THREADED ACCESS 2015/0193355 Al* 7/2015 Hughes GO6F 12/123
711/129
71) Applicant: EMC C tion, Hopkinton, MA
(71) Applican S FOREIGN PATENT DOCUMENTS
(72) Inventors: Grant Wallace, Pennington, NJ (US); wo WO 01713229 212001
Philip Shilane, Yardley, PA (US)
OTHER PUBLICATIONS
(73) Assignee: (E[?g)c Corporation, Hopkinton, MA NN85056914, IBM Technical Disclosure Bulletin, May 1985, US.*
" .
(*) Notice: Subject to any disclaimer, the term of this cited by examiner
%atserét lls SZ)ESHS edl 60; g(aiJl;Sted under 35 Primary Examiner — Gary Portka
o Y yS: (74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor
(21) Appl. No.: 14/302,570 & Zafman LLP
(22) Filed: Jun. 12, 2014 7 ABSTRACT
Exemplary methods for minimizing contention among mul-
(51) Imt. CL tiple threads include maintaining a plurality of linked lists of
GO6F 12/12 (2016.01) elements, each linked list corresponding to one of a plurality
GO6F 12/08 (2016.01) of threads accessing cache entries, each element of each
S, CL 1nked list corresponding to one of the cache entries, wheremn
52) U.S. Cl linked li ponding fth h i herei
CPC GO6F 12/122 (2013.01); GOGF 12/0871 each linked list comprises a head element and a tail element,
(2013.01) the head element corresponding to a most recently used
(58) Field of Classification Search (MRU) cache entry among all cache entries accessed by a
None corresponding thread, and the tail element corresponding to
See application file for complete search history. a least recently used cache entry among all cache entries
accessed by the corresponding thread. In response to a cache
(56) References Cited eviction request, determining a LRU cache entry among the
plurality of cache entries based on values accessed from one
U.S. PATENT DOCUMENTS or more of the tail elements of the linked lists, and evicting
8621154 BI* 122013 Goldschmidt GOGF 17/3033 e determined LRU cache entry by populating the deter-
707/827 mined LRU cache entry with the new data.
2008/0250203 Al* 10/2008 Schreter GOGF 9/52
711/117 24 Claims, 18 Drawing Sheets
300 rﬁ
v 331 Threads
323A- 3238
: 33 |
Cache Manager Linked Lists i}
Cache 340 350 351A- 3518 i
Client | ! l T
301 | Backup Engine 306 | Average and
Standard Distributed
| Deviation Data Structure
Deduplication Storage Engine Calculator M1
— 307 342
Client l |
302 | Storage Unit Interface o | Storage Unit Interface |
321 322
[|
L\ |
Metadata Metadata
System
Data Objects 304
312 313
Storage Unit Storage Unit
308 309

US 9,460,025 B1

Sheet 1 of 18

Oct. 4, 2016

U.S. Patent

(LYY ¥OIud)
a1 9I4
a spealy} 18yjo jje jno m:.Eoo\ pue cm.: pa)ulj ayj O.Em.mmoom peaiy} puodas
1817 POMUIT
« . __mhf nmm_._/
B £:3 G: | 68 H ov H w0 H w9 T]
J 7 . S S S S S ..\ J
T - S) A1 LT §1L e ., ToTutod peon
.......................... ETEN
(LYY ¥OIud)
gl 9ld
oIT Speally] Jaujo Jie jno Bupiao] pue ‘Isi paxulj oy Buissadde peaiy 1si14
oL . u:\ce_c: pect
= g: || 120X 69 [o:v | 10 _./
S J J J 7 ,.../ S J .\ S
9l Gl 127 Ehl N: :.r. € o) JoJuIog pesH
(LYV HOIdd)
Yl 9l
0l
oL 1817 PayUIT pea
EER o S sia ol 2o I 68 o |
9Ll SLl Vbl hl AN A g1 Wg
Poxo0T = pjog _ duwie)soLui] : JuaNI00) _ ‘910N

US 9,460,025 B1

Sheet 2 of 18

Oct. 4, 2016

U.S. Patent

(LYY ¥OI¥d)
Z'9l4

~¢—— pouad swi siy) Buunp pajels s Z pesiy | ————p

[4%4
(31] Jo pedY 0}) 2A0W pue ‘gl] Aljue ul 9 ajeindod ‘4 101n0 “69)

Jsi| paxul| Bupepdn g peaiyL

T2
1SI| pavuI| 0} $$200E J0} BUIpUSU0D Z pea.y |

Js|| paxul| Buepdn |, peaiy L

(o4
A (1511 Jo peay 0y ¢, | Anuo arow “Ba)

aull]

US 9,460,025 B1

Sheet 3 of 18

Oct. 4, 2016

U.S. Patent

WCeoollllll

giee - v1se

SISIT payuIT

60€ 80€
1un sbeioig Iun sbeioig
(3% [4*3
¥0¢ sj08lqo ereq N sj00lqQ ElRQ
waysg —
obeio)g 1€ 01
elepels|y EJEPEJSN
0ce /
443 o 1e€
90BuaU| Juf abeinlg 9oBuaU| Iun abelo)g
Tt 108
5% J0jB|N3IED) ouibug abelojg uonealdnpaq
ainjnag ejeq uoneirsq
paInqLsiy PJEpUElS
pue abelany 90¢ suIbug dnyoeg
2 _ _
0S¢ 7% syoe)
6
Jabeuepy syoen KI5 S0E0
9¢e :
dece - veee Ian ayoen
spealy] 333

€9l

208
Jusiio

10¢€
Jusi|g

00¢

US 9,460,025 B1

Sheet 4 of 18

Oct. 4, 2016

U.S. Patent

¥ 'Ol

T%¢
(s@aq) aimonys eleq penguisiq

(4157 57
Juswis|3 ejeq Jusws|3 eleq
47 oLy e %47 157
dwejsawi | oJu| dweysewi | oJu|

US 9,460,025 B1

Sheet 5 of 18

Oct. 4, 2016

U.S. Patent

¢ 'Ol
(GETE peaiy o} “Br)
g1G6g 1S paquin
9¢cs 434 PES
JuSWISIF JSIT PaXulT JUSWISIF 1817 pa3ul] JUBLUSIF JSIT paXUIT £o
el Ny pesH
s s 5T oIS iz -
dwejselwi] o| dweysew | o| dwejsawi| o
195
19)uI0d peaH
(VECE peauy) Joj “b-)
V1GE 18I payuly
[33 439 1€5
Juswie(3)81 payun Jusws|3 JsI7 payun jusws(3 s payul
TRNY — — — — PESH
€25 ers 42 45 728 TS 4
dwejsewi | oy dweysewn | oJu| dwesswi | oy
oS
Ja)uI0d pesH

US 9,460,025 B1

Sheet 6 of 18

Oct. 4, 2016

U.S. Patent

g9 'old
) Ll ewnle sad TR
v \ ajepdn Ajjuaiinauod |
9y speay} ajdiiniy £ey
L swp \ —
1e o ajendod / L] awrn e
pUE 4 SI19IAD Je) $8sS8008 %mm_m_m_w Mﬁ %LH_HM
gede peaiyl VEZE pealyl o
\ / _/
14 X £:3 . 100 X 69 0L:Y
S/ \ S S S/ \ S S
9y gey vey 1297 ey ey
V9 'Ol
_ . , : . : 19
W. = m\ 3 m\ d _ N\ o || m\ g | | o\r v (sqq) ainpnig
9y GeY EP 7 2y LeP Eled penqisia

duwejsaLui] ; JUaj0n)

‘910N

US 9,460,025 B1

Sheet 7 of 18

Oct. 4, 2016

U.S. Patent

L Ol

00.

057
pea.y) 8U) O BJep POSSI00. apIAOId

0

T

T

0c.
speaJyj Joyjo 1no Bupjool Jnoypm
‘passaooe Apusoal useq sey
Aus aydseo ay) 91eaIpul 0 Ajud
8Uoed pPassadde 0] Bulpucdsalios
Juswse 8qq e1epdn Ajesiwoyy

eel
speaiy} Jayjo Jno Bupjoo| noyym
‘pessa0ae Ajusdal usaq sey
Anus ayoes gjealpul 0] Ajus ayoes
a|qe|leAe ay) 0} Bulpuodsaliod
JusWwale §qQ s1epdn Ajjealwoyy

7
speaJy) Jayjo Jno Bupjoo)
INOYIM ‘POsSadae AJLUsdsl Uasq
sey Anus ayded gjeslpul 0} Anuo
8283 pajaIAe 0] Bulpuodsa.ios
Juswale §qQ s1epdn Ajjeaiwoyy

T

T

0¢L
Aljus 8ysea s|gejieae

3 Ul ejep passaooe ajendod
pue ‘ebelo)s wouj ejep sse00y

ov
Aius ayoed
POIDIAG Ul BJep PEssaade sjendod
puE ‘abel0)s WO, BIEP SS800Y
‘AU ayoeD 158p|0 J0IAg
‘Aljua 8yoeD 1S8pP|0 BUILLIB)e(

N
SOA ON
Gz 4]
Aljua 8y2es Wol) ejep $$890y ;ajqe|eAe Ajue ayoe)
SOA T ON
0z
&Y 8YdED
c0L

BJEp $S0008 0) PRAIY) B WOJ) }sanbal oA1800Y

US 9,460,025 B1

Sheet 8 of 18

Oct. 4, 2016

U.S. Patent

8 'Ol

008

Geg
abel0s 0] BlEP B1IA
028 0¢8
speaJy) Jayjo jno Bunjao| Jnoynm speaJy Jayjo no Bupyoo)
‘passaooe Ajusdal usaq sey Jnoym ‘passadde Apusdal usaq
Ajuo ayoeo ajealpul 01 Anuo ayoes sey Aujus dyoeo 9jeaipul 03 Aud
a|ge|leAe ay) 0) Bulpuodsaliod 8Uoe3 padis 0] Buipuodseunos
Juswiaje §qq a1epdn Ajjesiwoyy Juswia|e SQQ drepdn Ajjeolwoyy
4]
S13 Ayus
Anjus syoeo 9UoED PaJOIAS Ul Ejep sjeindod
a|qe|leAe ay) Ul elep 8jendod ‘A1jus 8YoED 158p|0 J0IAT
‘Aljus dyoed 1sop|0 suIwWIRRQ
N
SO\ ON
018

J9|qe|leAe Ajus syoen

G08

EJep)LIM 0] PR8IY) B WOJJ }Senbal B aAI800Y

US 9,460,025 B1

Sheet 9 of 18

Oct. 4, 2016

U.S. Patent

6 '9OId

006

[593
Anua ayoeo 1Sop|0 AY) SE JUSWa© §aQ palusp! ay) 0} Buipuodsa.lod Aljud ayaed ay) 19919S

ON

06
£SAa o jesgns
pajos|as ay) J0 Jed se pesl JSe| Sem Ji 9ouIs pebueyo Juswaje SQQ Pelusp! JO 8n|eA 8y) Sey

[543
19S(NS 8U) Ul SJUBWB®
SqQ ||e Buowe dwe)salul Js||elWs 0Jaz-UoU B Y)Im Juswaje §qq e Alusp soA

ON

026
¢POLIUSP] SEM JUSWB[S SO BUO ISER| I

T 1

GI6
abe.sne Buiuun. syj WoJ) SUOIBIASD PJEPUBIS JO JBguInu paulisiepald

B 1Se3| JB pUe 04oZ-UOU SI yoiym dWwejsaiul e sey Jey) 18Sgns pa)os|es sy UILIm Juswsie saq 1sill e Alnusp)

T

016
sjusWale SQ 10 19sqns e 108jes

0

G06
Alus 8Yord 189p|0 BUILLIBIBP 0) 188Nba. B 8AI808Y

SOA

US 9,460,025 B1

Sheet 10 of 18

Oct. 4, 2016

U.S. Patent

0l Ol

G101
P8ssad0e SEM JusWs|e

sSqaq ayi 03 Buipuodsenios Ajus aysed ayj usym Jo dweisawi) e Yim juswsie Saqg ayl Jo dwejsawi ayj ajepdn Ajjesiwoyy

T

0L0L
pajoIAe Buleq woll Juswald SgQq dy) 0} Bulpuodssllos Aljus syoed ayj Jusasld

0] JapJo ul payoias Buiaq s Ajua ayoed ayj 1ey) sjeslpul 0} () 0] Juswis|e SAQ dyl Jo dwejsawi ay) sejepdn Ajlesiwoyy

G0l
JusWws|e §gq e aepdn Ajjeaiwoe 0] sanbal e sAI808Y

000}

US 9,460,025 B1

Sheet 11 of 18

Oct. 4, 2016

U.S. Patent

L1 "9l

-—

ayoed sy Jo souewlopad Buiseasoul Agalsy) 4oyI0 YOES YlIM PUSILOD

0} buiaey Jnoylm sjuswale SqQ Sepdn Ajualinouco ues speaJy) adiny ’

alll
SpEe8sIY) Jaylo Ino Bumoo| Inoym (Zep wswe|3 ejeq “bo)
Juswa|d saq bunepdn Ajjesiwoie (gsze pealy) “be) peauy) puosag

N N

CLLL
spesJy) Jeyo Jno Bumool noypm (9ef uswe|3 eleq “6e)
Juswsale saq Bunepdn Ajjesjole (veze pesiyy “69) pealy) isil4

awi]

US 9,460,025 B1

Sheet 12 of 18

Oct. 4, 2016

U.S. Patent

gacl '9ld
L el pesH “ (gSZE pesiyy oy “6'9)
H X €9 i = EERE =T grGe 17 paun
Ty 7 7 T .7 —
8ed Nmm 9¢g geg £e5 Sy
__Ef < pESH (VEZE peaiy) oy “6'a)
_ e — VIGE 157 poyur]
9:q LD 6:9 - oy]
A A ! J J S
yes eeg 2€5 16§ 8¢S ove [ommoa peon
vl 'Old
__Sr PEOH | (GETE peauyy Joj “6'9)
v H co H r1 H o= gTGE 117 PayuIT
S S S S
8€s FARY 9es ges LS lajuiod pesH
__Sf PeSH (VECE peaiyy Jo} "6'0)
. : VTGE 151 payjur]
9oa H 20 H 689 FH{ ov
S S S S
peg £eg 2€8 168

0vs J8julod pesH

S)sI| paxul
ajepdn Kjjualinouod
ues speaJy apdiyn

P8%207 = pjog

_ durjsatuj] : Juson

‘910N

US 9,460,025 B1

Sheet 13 of 18

Oct. 4, 2016

U.S. Patent

¢l Old

00gl

0l

peaJly) 8y) 0) BJep passadde apIAcid

T

T

T

0cel
passa0oe Aj)Usdal Udsq sey

Ajus syoed ay) a)ealpul 0} Ajus
ayoes passanoe o) buipuodsaliod
Juswiaje Jsi| payull ajepdn

Geel
passao9. Ausoal usaq sey

Anus ayoea sjesipul 0) A1jus sydes
d|qe|ieAe ay) 0) Buipuodsauioo
Juswiafa 3si| payul| eyepdn

Grel
passaooe AjusoaJ usaq

sey Ajjua ayoed aealpul o) Ajus
2yoeo pajaIng 0) Bulpuodsaliod
Juswiafa 3si| paxul| ojepdn

T

T

ogel
Ajua ayoed g|ge|ieAR

3 Ul Bjep passsoae ajejndod
pue ‘abeio)s WoJ) B)ep SS800Y

ovEl
Aius syoes

PoJOIAS Ul BJEp Passadde dieindod
pue ‘abeJo)s WOl Bjep S830y
‘A1jus 8oL JSOP|0 10IAT
‘Al1us 8ok Jsap|0 duIWIslR(Q

AN

SO ON
GlLEl Geel
Aijug ayoes wolj ejep $s900y ;2|qe|iere Aljua sysen
SOA T ON
OLEL
&Y 8yse)
/]
Gogl

BJEp SSS00E 0) pealy) & Wol) 1senbal e oA1800Y

US 9,460,025 B1

Sheet 14 of 18

Oct. 4, 2016

U.S. Patent

vl "Old

00¥}

qeyl

abe.oys 0) ejep O

T

0cvl
pesse0oe Ajusos. Ussq sey

Anus aydes ajeaipul 0] Ajus sydes
a|qe|ieAe ay) 0} buipuodsallod
JusLuale Jsi| payul| ajepdn

0cvl
Passe00e AjUsosl useq

sey Asjua ayoed ajesipul 0) Ajus
ayoed pajoIng 0) Bulpuodsellod
JusLuald 18| pavul| axepdn

T

T

Gyl
Anus ayoed

o|ejieAe ay) Ul elep ajeindod

Gevl
Anus
3LOB PaJoIAS Ul BJep 8)e|ndod
‘A1jus 8Yded 189p|0 J0I1AT
‘Aijus 8yaed 158p|0 BuIWIB)e(Q

/N
SO

ON

oLyl

¢9|qe|leAe Ajjus ayoen

G0yl

EJep)LIM 0) PESIY) B WOJ] Jsanbal & oAI800Y

US 9,460,025 B1

Sheet 15 of 18

Oct. 4, 2016

U.S. Patent

005}

Gl old

0csl
Aijus ayoes Ny Ajglewixoidde ay) se jJusws|o |1g) paljuspl 8y} 03 Bulpuodsslioo Aljus ayoed sy} 198|8S

T

GlG)
duwieysalun)sa|jews e sey jey) Juswaye |ie) e Ajuspl 0} SJUSWS|o [Ie) JO 1oSgns ay) $S800Id

T

016Gl
SjuBLWa|® |IB) BY) JO 18SgNS B 10993

T

G0Gl
Aijus 8yoed 1$9p|0 BuIWIBIEP 0] Jsanbal B BAI8d8Y

US 9,460,025 B1

Sheet 16 of 18

Oct. 4, 2016

U.S. Patent

0091

I E

0g9l
S)uBWB|e PaYoo| BY) ¥oojuN
PUE ‘SJUBWSID JSI| PaYUI| POAOL BY) 0} JUBOEIPE B1oM Jey) SJUBLUD|D JSI| payul| By} YuIl-oy

T

Ga9l
possa0oe sem AJjUs ayoed Buipuodsa.liod sy USYM JO SWI) BY) YJIM JUSWSIS SI| paul| peAow sy Jo dwejssuwn sy} ejepdn

T

0291
Jusws| JSI| paxul| 8y} 0} SPEW 8] 0}
a1epdn ay) pajsenbal Jey) peauy) ay) 0) Buipuodsallod ISI| payul| 8y JO pesy ay) 0) Juswa|e 1SI| paxul| pelsanbal sy arop

GlLolL
JUBWSIS 1SI| PaYuI| 8Y) 0) Bpew aq 03 8jepdn sy peisenba. jey) pes.y) ay) buipuodss.iod Jsi| peyul| 8y JO pESY BUj %907

T

0191
Wway) bunepdn wo.J Speaiy) Jayjo JusAald 0] SJUSLWIS|S JSI| Payul| JUSOE[pEe S} pUB JUBLUBS 1SI| payuI| pajsanbal ay) %007

T

G09l
JuBLIBId 181 paxul| B a1epdn 0] jsanbal e aAIg0aY

US 9,460,025 B1

Sheet 17 of 18

Oct. 4, 2016

U.S. Patent

Ll "9l

ejep swes oy} Buissaooe jou aJe Ady 4l

‘ SIUBLIBIR 181| payull djepdn Ajjuslinouod ued speauy) odiniy

—l

\ Gl

(8£S JuaWa[o I8! paxul|
/ “B-9) Juswiefe 3si| paxul| Buriepdn (geze pesy) “6-e) peaiy) puodss

\ ot
(€€G wswee)s!| peyul|

/ “B-0) Juswaye 3si| paxul| Bunepdn (ggze pealyy “6-0) peaiyyisid

awi|

US 9,460,025 B1

Sheet 18 of 18

Oct. 4, 2016

U.S. Patent

318t 0187 918l
sj8(qQ ejeq (shiun abeiois EJepejs
Y
218

goeps)u| yun abeioig

Inaa

o081
T ¢ ’ Jojeulwi|3 uoneoydng

auibug obelo)g ¥e8l
uonesiidnpaq xapu|

’) ¥081

Jojuswbog
— 77T ——
0cs8l 8081
soedsalieN MMM%__\M — [04JU07) WRISAS BJi4
2081

20BLIO)U| S0IMDS 9l

+

0081

Y

25D
(shueld

US 9,460,025 B1

1
MAINTAINING A SEPARATE LRU LINKED
LIST FOR EACH THREAD FOR
MULTI-THREADED ACCESS

RELATED APPLICATIONS

This application is related to U.S. patent application Ser.
No. 14/302,558, entitled “Contention Free Approximate
LRU For Multi-Threaded Access,” filed Jun. 12, 2014.

FIELD

Embodiments of the invention relate to storage systems;
and more specifically, to improving cache utilization on a
storage system.

BACKGROUND

A typical data storage system includes a cache device that
stores data so that future requests for that data can be served
faster. The data that is stored within a cache might be values
that have been computed earlier or duplicates of original
values that are stored elsewhere. If the requested data is
contained in the cache (herein referred to as a cache hit), this
request can be served by simply reading the cache, which is
comparatively faster. On the other hand, if the requested data
is not contained in the cache (herein referred to as a cache
miss), the data has to be recomputed or fetched from its
original storage location, which is comparatively slower.
Hence, the greater the number of requests that can be served
from the cache, the faster the overall system performance
becomes.

During a cache miss, the storage system may evict a cache
entry (also commonly referred to as a cache slot) in order to
make room for the new requested data. As used herein,
evicting a cache entry refers to the reusing of the cache entry
to store new data. The heuristic used to select the cache entry
to evict is known as the replacement policy. One popular
replacement policy, “least recently used” (LRU), replaces
the least recently used cache entry. Conventionally, to imple-
ment the LRU policy a single linked list of elements is
maintained, wherein each linked list element is mapped (i.e.,
logically linked) to a cache entry.

When a cache entry is accessed, its corresponding linked
list element is moved to the head of the linked list. Thus, an
ordered linked list is maintained based on access time and
the tail of the linked list contains the LRU entry that is
chosen when eviction is needed. Such a conventional
mechanism for evicting cache entries works well if the
number of threads accessing the cache entries and updating
the linked list is relatively low. For highly multi-threaded
environments, however, the head of the list quickly becomes
a bottleneck because many threads are simultaneously trying
to lock the head of the list in order to insert their recently
accessed element. Locking the linked list prevents other
threads from updating the linked list. Thus, the system does
not perform as well as expected because streams sit idle
waiting to access the head of the linked list.

FIGS. 1A-1C are block diagrams illustrating linked list
110 maintained by a conventional system for implementing
the LRU policy. Linked list 110 includes linked list elements
111-116, wherein each linked list element corresponds to a
cache entry (not shown). Linked list element 111 is the head
element and corresponds to the most recently used (MRU)
cache entry. Linked list element 116 is the tail element and
corresponds to the LRU cache entry. Each linked list ele-
ment contains pointers (not shown) linking it to other

10

15

20

25

30

35

40

45

50

55

60

65

2

elements in the linked list. For example, linked list element
112 contains a pointer pointing to previous element 111 and
a pointer point to next element 113. Singularly-linked lists,
however, only contain within each of its elements a pointer
pointing to the next element. For example, if linked list 110
was singularly linked, linked list element 112 would only
contain a pointer pointing to element 113. Further, linked list
110 includes head pointer data structure 150 that contains a
pointer pointing to its head element 111. In FIGS. 1A-1C,
each linked list element is shown with a letter followed by
a colon and a number (e.g., “A:10”). Here, the letter repre-
sents the content currently stored at the corresponding cache
entry, and the number represents the timestamp of when the
corresponding cache entry was last accessed. Thus, in the
example “A:10”, the linked list element corresponds to a
cache entry which contains content “A”, which was accessed
at time “10”. Further, a bolded box indicates the linked list
element is locked. As illustrated in FIG. 1A, linked list
elements 111-116 contain the content:timestamps of A:10,
B:9, C:7, D:5, E:3, and F:1, respectively.

Referring now to FIG. 1B, which illustrates a first thread
accessing content C from the cache entry corresponding to
element 113 at time 11. Thus, the first thread locks head
pointer 150, and moves linked list element 113 to the head
of the linked list. The first thread updates linked list element
113 with the timestamp of when the cache entry was
accessed (i.e., 11). After linked list element 113 has been
updated, the first thread unlocks head pointer 150. Note that
during this process, other threads may be contending for
access to linked list 110. In such a scenario, the other threads
are stalled until the first thread has completed its processing
of linked list 110. In a system having multiple threads, such
a limitation can have a severe impact on system perfor-
mance.

Referring now to FIG. 1C, which illustrates a second
thread evicting the cache entry corresponding to element 116
at time 12. In this example, the second thread evicts content
F and populates content G in the cache entry. Thus, the
second thread locks head pointer 150, and moves element
116 to the head of the linked list. The second thread updates
linked list element 116 with the timestamp of when the cache
entry was populated (i.e., 12). After linked list element 116
has been updated, the second thread unlocks head pointer
150. Note that the requests to update linked list elements 113
and 116 (and possibly numerous other requests) may occur
simultaneously. In such a scenario, the threads are stalled
until the first thread has completed its processing of linked
list 110.

FIG. 2 is a timeline diagram illustrating multiple threads
contending for access to a linked list in a conventional
implementation of the LRU policy. FIG. 2 shall be described
with reference to FIGS. 1B-1C. Referring now to FIG. 2,
during time period 210, a first thread has locked a linked list
in order to update the head of the list. For example, in FIG.
1B, the first thread locks linked list 110 in order to update
and move element 113 to the head of the list. During time
period 211, a second thread is contending for access to the
linked list. For example, the second thread of FIG. 1C
contends for access to linked list 110 in order to update
element 116. The contention may occur, for example, while
the first thread is updating the linked list as shown in FIG.
1B. During time period 212, the second thread has gained
access to the linked list, and updates the element. For
example, the second thread of FIG. 1C updates element 116
by moving it to the head of linked list 110. Note that during
time period 211, the second thread is stalled, waiting for
access to the linked list. Embodiments of the present inven-

US 9,460,025 B1

3

tion overcome these limitations by providing mechanisms
for concurrent updating of elements corresponding to cache
entries.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings in which like references indicate similar
elements.

FIG. 1A is a block diagram illustrating a conventional
linked list for implementing the LRU policy.

FIG. 1B is a block diagram illustrating a conventional
linked list for implementing the LRU policy for cache
eviction.

FIG. 1C is a block diagram illustrating a conventional
linked list for implementing the LRU policy for cache
eviction.

FIG. 2 is a timing diagram illustrating multiple threads
contending for access to a single linked list in a conventional
implementation of the LRU policy.

FIG. 3 is a block diagram illustrating a system according
to one embodiment.

FIG. 4 is a block diagram illustrating a distributed data
structure according to one embodiment.

FIG. 5 is a block diagram illustrating multiple linked lists
according to one embodiment.

FIG. 6A is a block diagram illustrating a DDS according
to one embodiment.

FIG. 6B is a block diagram illustrating concurrent updat-
ing of a DDS according to one embodiment.

FIG. 7 is a flow diagram illustrating a method for imple-
menting the LRU policy according to one embodiment.

FIG. 8 is a flow diagram illustrating a method for imple-
menting the LRU policy according to one embodiment.

FIG. 9 is a flow diagram illustrating a method for deter-
mining an approximately LRU cache entry according to one
embodiment.

FIG. 10 is a flow diagram illustrating a method for
atomically updating a DDS data element according to one
embodiment.

FIG. 11 is a timing diagram illustrating multiple threads
accessing a DDS without contention according to one
embodiment.

FIG. 12A is a block diagram illustrating multiple linked
lists according to one embodiment.

FIG. 12B is a block diagram illustrating concurrent updat-
ing of multiple linked lists according to one embodiment.

FIG. 13 is a flow diagram illustrating a method for
implementing the LRU policy according to one embodi-
ment.

FIG. 14 is a flow diagram illustrating a method for
implementing the LRU policy according to one embodi-
ment.

FIG. 15 is a flow diagram illustrating a method for
determining an approximately LRU cache entry according to
one embodiment.

FIG. 16 is a flow diagram illustrating a method for
updating a linked list element according to one embodiment.

FIG. 17 is a timing diagram illustrating multiple threads
accessing multiple linked lists without contention according
to one embodiment.

FIG. 18 is a block diagram illustrating a deduplication
storage engine which can be used with embodiments of the
invention.

DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details
such as logic implementations, opcodes, means to specity

10

20

40

45

55

65

4

operands, resource partitioning/sharing/duplication imple-
mentations, types and interrelationships of system compo-
nents, and logic partitioning/integration choices are set forth
in order to provide a more thorough understanding of the
present invention. It will be appreciated, however, by one
skilled in the art that the invention may be practiced without
such specific details. In other instances, control structures,
gate level circuits and full software instruction sequences
have not been shown in detail in order not to obscure the
invention. Those of ordinary skill in the art, with the
included descriptions, will be able to implement appropriate
functionality without undue experimentation.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives,
may be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to
indicate that two or more elements, which may or may not
be in direct physical or electrical contact with each other,
co-operate or interact with each other. “Connected” is used
to indicate the establishment of communication between two
or more elements that are coupled with each other.

Techniques for minimizing contention when performing
cache eviction in a multi-threaded system are described
herein. In one aspect of the invention, a cache manager
maintains a distributed data structure (DDS) of data ele-
ments, wherein each data element is associated with a cache
entry. Each data element contains information, such as, for
example, a timestamp of when its corresponding cache entry
was last accessed. In one embodiment, the cache manager
uses the timestamps of the data elements to determine an
approximately LRU cache entry.

In one embodiment, when a thread accesses a cache entry,
the cache manager atomically updates the corresponding
DDS data element to indicate that the cache entry has been
recently accessed. As used herein, accessing a cache entry
refers to reading from, or writing to a cache entry. In one
embodiment, the cache manager updates the DDS element
with the timestamp of when the cache entry was accessed.

In some instances, cache eviction may be necessary in
order to populate (i.e., write) new data in the cache. In one
embodiment, in order to determine the LRU cache entry for
eviction purposes, the cache manager processes the DDS
elements to determine which of the processed DDS elements
contains the “oldest” timestamp. Throughout the descrip-
tion, timestamps are described using relative terms such as
“older”, “oldest”, etc. In one embodiment, a smaller, non-
zero timestamp is considered to be older than a larger
timestamp. Other aging conventions, however, can be used
without departing from the broader scope and spirit of the
present invention. A zero timestamp, in one embodiment,
has a special meaning. For example, a zero timestamp can
mean that the cache entry and corresponding DDS element
is being evicted. In one embodiment, the cache manager
compares the timestamps of the processed DDS elements to
identify the DDS element with the smallest, non-zero value

US 9,460,025 B1

5

among all the processed DDS elements. In such an embodi-
ment, the cache entry corresponding to the identified DDS
element is determined to be the LRU cache entry.

In an alternate embodiment, in order to determine the
LRU cache entry, the cache manager maintains a running
average and a running standard deviation of the timestamps
as the DDS elements are updated. In such an embodiment,
the cache manager processes the DDS elements until the first
DDS element with a timestamp that is non-zero and at least
a predetermined number of standard deviations from the
running average is identified. The cache entry corresponding
to such an identified DDS element is determined to be the
approximate LRU cache entry. In one embodiment, if none
of the DDS elements contains a timestamp which is non-
zero and at least a predetermined number of standard
deviations from the running average, the cache manager
selects the DDS element with the smallest, non-zero time-
stamp among all the processed DDS elements as the oldest
DDS element, and the corresponding cache entry is deter-
mined to be the approximate LRU.

In one embodiment, in order to reduce the amount of time
required to determine the LRU cache entry, only a subset
(i.e., portion) of the DDS is processed. Thus, the cache entry
determined to be the LRU may not truly be the LRU. Rather,
such a cache entry is only “approximately” the LRU. In such
an embodiment, each time the eviction process is performed,
the cache manager selects a different subset of the DDS to
process. In this way, the cache manager avoids the possi-
bility of repeatedly evicting the same set of cache entries.

As described above, conventionally the LRU policy is
implemented using a single ordered linked list, and conten-
tion by multiple threads for access to the head of the single
ordered linked list can impair performance of the system.
Embodiments of the present invention overcome these limi-
tations by providing atomic access to the DDS elements. In
such an embodiment, the cache manager is able to handle
multiple threads accessing the cache entries and updating the
DDS concurrently. Atomic access is described in further
details below.

In one embodiment, after identifying an approximate
LRU cache entry as described above, the cache manager
performs a “compare-and-swap” operation. As used herein,
a “compare- and swap” operation comprises a thread com-
paring an in-memory integer to the value that the thread
believes it to be, and if they are equal, the thread swaps a
different integer value into that memory location. This is all
done atomically without the calling thread explicitly acquir-
ing a lock, wherein the “compare-and-swap” operation is
performed using an atomic instruction supported by the
hardware or processor. This allows the calling thread to
check the value of an integer at time 1, and then change the
value at time N only if that value has not changed since it
was checked at time 1. If another thread has changed the
value in the meantime, then the swap fails, and the calling
thread will need to handle that case. In one embodiment,
after the cache manager identifies the approximate LRU
cache entry, the cache manager returns to the identified
timestamp and determines if the timestamp has changed
since it was identified using the “compare-and-swap” opera-
tion described above. If the value has changed, then the
“compare-and-swap” operations fails, and then the cache
manager will have to identify another approximate LRU
cache entry.

In one embodiment, as part of a successful “compare-
and-swap” operation, the cache manager swaps the time-
stamp of the corresponding DDS element with a zero to
indicate that the cache entry is being evicted. In this way, the

10

15

20

25

30

35

40

45

50

55

60

65

6

cache manager prevents other threads from attempting to
evict the same cache entry. One having ordinary skill in the
art would recognize that a value other than zero can be used.
In one embodiment, after the data has been populated in the
evicted cache entry, the cache manager updates the corre-
sponding DDS element with the timestamp of when the data
was populated in the cache entry.

According to another aspect of the invention, the cache
manager maintains a plurality of linked lists of elements,
each linked list of elements corresponding to one or more
threads in the system that accesses the cache entries. Each
linked list element is associated with a cache entry. As used
herein, a linked list corresponding to a thread means that the
thread accessed the cache entries corresponding to the
elements of the linked list. In one embodiment, each linked
list element contains information of its corresponding cache
entry, such as, for example, a timestamp of when its corre-
sponding cache entry was last accessed. Each linked list
comprises a head element and a tail element, the head
element corresponding to a most recently used (MRU) cache
entry among all cache entries accessed by the corresponding
thread, and the tail element corresponding to a LRU cache
entry among all cache entries accessed by the corresponding
thread.

In one embodiment, when a cache entry is accessed by a
thread, the cache manager identifies the linked list element
corresponding to the accessed cache entry. In one embodi-
ment, the cache manager locks the identified linked list
element and its neighbor (i.e., adjacent) linked list elements
in order to prevent other threads from updating or evicting
the same linked list elements. In one embodiment, the cache
manager also locks the head of the linked list corresponding
to the thread that accessed the entry. According to one
embodiment, the cache manager removes the identified
linked list element from its current/original linked list, and
inserts it at the head of the linked list corresponding to the
thread that accessed the cache entry. The cache manager
updates the moved linked list element with a timestamp of
when the corresponding cache entry was accessed. The
cache manager then removes the identified linked list ele-
ment from its original linked list, re-links the linked list
elements that were adjacent to the removed linked list
element, and unlocks all locked linked list elements.

In one embodiment, in order to determine the LRU cache
entry, the cache manager processes the tail elements of the
linked lists to identify the tail element with the oldest
timestamp. The cache entry corresponding to the identified
tail element is determined to be the LRU. According to one
embodiment, after a tail element is identified as the LRU, the
cache manager locks the identified tail element and its
neighbor (i.e., adjacent) linked list element in order to
prevent other threads from evicting the same tail element. In
one embodiment, the cache manager also locks the head of
the linked list corresponding to the thread that is evicting the
cache entry. In one embodiment, the cache manager popu-
lates the data in the cache entry and updates the correspond-
ing identified tail element has been updated. The cache
manager removes the identified tail element from its original
linked list, and inserts it at the head of the linked list
corresponding to the thread that is evicting the cache entry.
The cache manager then re-links the linked list elements that
were adjacent to the removed linked list element, and
unlocks all locked linked list elements.

In one embodiment, in order to reduce the amount of time
required to determine the LRU cache entry, only a subset
(i.e., portion) of the tail elements are processed. Thus, the
cache entry determined to be the LRU may not truly be the

US 9,460,025 B1

7

LRU. Rather, such a cache entry is only “approximately” the
LRU. In such an embodiment, each time the eviction process
is performed, the cache manager may select a different
subset of the tail elements to process. In this way, the cache
manager avoids the possibility of repeatedly evicting the
same set of cache entries.

In some instances, one or more linked lists may become
“dead”. Here, a dead linked list refers to a linked list that is
no longer associated with any active thread. For example, a
thread which has exited (i.e., been de-allocated) may leave
behind a linked list of elements that is not associated with
any active thread. According to one embodiment, in such a
scenario, the cache manager evicts the cache entries corre-
sponding to the elements of the dead linked lists first, even
though they may not be the LRU. Alternatively, the cache
manager may merge (i.e., link) the dead linked list to a live
linked list. For example, a dead linked list may be merged
to the tail of a live linked list. As used herein, a live linked
list is linked list which is associated with a live/existing
thread.

By maintaining multiple linked lists, embodiments of the
present invention overcome the limitations described above.
There may be contention by multiple threads, however, for
access to the linked list elements that are locked as described
above. It should be noted, however, that the probability of
multiple threads contending for these locked linked list
elements are low because the probability of multiple threads
concurrently accessing the same regions of data are low.

FIG. 3 is a block diagram illustrating a storage system
according to one embodiment of the invention. Referring to
FIG. 3, system 300 includes, but is not limited to, one or
more client systems 301-302 communicatively coupled to
storage system 304 over network 303. Clients 301-302 may
be any type of clients such as a server, a personal computer
(e.g., desktops, laptops, and tablets), a “thin” client, a
personal digital assistant (PDA), a Web enabled appliance, a
gaming device, a media player, or a mobile phone (e.g.,
Smartphone), etc. Network 303 may be any type of networks
such as a local area network (LAN), a wide area network
(WAN) such as Internet, a corporate intranet, a metropolitan
area network (MAN), a storage area network (SAN), a bus,
or a combination thereof, wired and/or wireless.

Storage system 304 may include any type of server or
cluster of servers. For example, storage system 304 may be
a storage server used for any of various different purposes,
such as to provide multiple users with access to shared data
and/or to back up mission critical data. Storage system 304
may be, for example, a file server (e.g., an appliance used to
provide network attached storage (NAS) capability), a
block-based storage server (e.g., used to provide SAN
capability), a unified storage device (e.g., one which com-
bines NAS and SAN capabilities), a nearline storage device,
a direct attached storage (DAS) device, a tape backup
device, or essentially any other type of data storage device.
Storage system 304 may have a distributed architecture, or
all of its components may be integrated into a single unit.
Storage system 304 may be implemented as part of an
archive and/or backup system such as a storage system
available from EMC® Corporation of Hopkinton, Mass.

In one embodiment, storage system 304 includes, but is
not limited to, backup engine 306, deduplication storage
engine 307, and one or more storage units 308-309 com-
municatively coupled to each other. Backup engine 306 is
configured to backup data from one or more source storage
devices to one or more destination storage devices. The
source and destination/target storage devices can be internal,
external, or a combination of both. Storage units 308-309

10

15

20

25

30

35

40

45

50

55

60

65

8

may be implemented locally (e.g., single node operating
environment) or remotely (e.g., multi-node operating envi-
ronment) via interconnect 320, which may be a bus and/or
a network. In one embodiment, one of the storage units
308-309 operates as an active storage to receive and store
external or fresh user data, while the other storage unit
operates as a target storage unit to periodically archive data
from the active storage unit according to an archiving policy
or scheme. Storage units 308-309 may be, for example,
conventional magnetic disks, optical disks such as CD-ROM
or DVD based storage, magnetic tape storage, magneto-
optical (MO) storage media, solid state disks, flash memory
based devices, or any other type of non-volatile storage
devices suitable for storing large volumes of data. Storage
units 308-309 may also be a combination of such devices. In
the case of disk storage media, the storage units 308-309
may be organized into one or more volumes of Redundant
Array of Inexpensive Disks (RAID).

In response to data (e.g., a data file) to be stored in storage
units 308-309, optional deduplication storage engine 307 is
configured to segment the data into multiple chunks accord-
ing to a variety of segmentation policies or rules. Dedupli-
cation storage engine 307 may choose not to store a chunk
in a storage unit if the chunk has been previously stored in
the storage unit. In the event that deduplication storage
engine 307 chooses not to store the chunk in the storage unit,
it stores metadata enabling the reconstruction of the data
using the previously stored chunk. As a result, chunks of the
data are stored in a deduplicated manner, either within each
of storage units 308-309 or across at least some of storage
units 308-309. Data stored in the storage units may be stored
in a compressed form (e.g., lossless compression: Huffman
coding, Lempel-Ziv Welch coding; delta encoding: a refer-
ence to a chunk plus a difference; etc.). In one embodiment,
different storage units may use different compression meth-
ods (e.g., main or active storage unit from other storage
units, one storage unit from another storage unit, etc.).

The metadata, such as metadata 310-311, may be stored in
at least some of storage units 308-309, such that data can be
accessed independent of another storage unit. Metadata of
each storage unit includes enough information to provide
access to the data it contains. In one embodiment, metadata
may include fingerprints contained within data objects 312-
313, where a data object may represent a data chunk, a
compression region (CR) of data chunks, or a container of
one or more CRs. Fingerprints are mapped to a particular
data object via metadata 310-311, enabling the system to
identify the location of the data object containing a chunk
represented by a particular fingerprint. When an active
storage unit fails, metadata contained in another storage unit
may be utilized to recover the active storage unit. When one
storage unit is unavailable (e.g., the storage unit has failed,
or is being upgraded, etc.), the system remains up to provide
access to any data not stored in the failed storage unit. When
data is deleted, the metadata associated with the data in the
system is updated to reflect that the data has been deleted.

In one embodiment, the metadata information includes a
file name, a storage unit where the chunks associated with
the file name are stored, reconstruction information for the
file using the chunks, and any other appropriate metadata
information. In one embodiment, a copy of the metadata is
stored on a storage unit for files stored on a storage unit so
that files that are stored on the storage unit can be accessed
using only the information stored on the storage unit. In one
embodiment, a main set of metadata information can be
reconstructed by using information of other storage units
associated with the storage system in the event that the main

US 9,460,025 B1

9

metadata is lost, corrupted, damaged, etc. Metadata for a
storage unit can be reconstructed using metadata informa-
tion stored on a main storage unit or other storage unit (e.g.,
replica storage unit). Metadata information further includes
index information (e.g., location information for chunks in
storage units, identifying specific data objects).

In one embodiment, the storage system as shown in FIG.
3 may be used as a tier of storage in a storage hierarchy that
comprises other tiers of storage. One or more tiers of storage
in this hierarchy may utilize different kinds of storage
devices and/or may be optimized for different characteristics
such as random update performance. Data are periodically
moved among the tiers based on data management policies
to achieve a cost-effective match to the current storage
requirements of the data. For example, data may initially be
stored in a tier of storage that offers high performance for
reads and writes. As the data ages, it may be moved into a
tier of storage according to one embodiment of the inven-
tion. In various embodiments, tiers include different storage
technologies (e.g., tape, hard drives, semiconductor-based
memories, optical drives, etc.), different locations (e.g., local
computer storage, local network storage, remote network
storage, distributed storage, cloud storage, archive storage,
vault storage, etc.), or any other appropriate storage for a
tiered data storage system.

In one embodiment, storage system 304 includes one or
more network interfaces (not shown) for communicating
with other networked devices (e.g., clients 301-302). A
network interface may be physical or virtual; and an inter-
face address is an IP address assigned to a network interface,
be it a physical network interface or virtual network inter-
face. A physical network interface is hardware in a network
device through which a network connection is made (e.g.,
wirelessly through a wireless network interface controller
(WNIC) or through plugging in a cable to a port connected
to a network interface controller (NIC)). Typically, a net-
work device has multiple physical network interfaces. A
virtual network interface may be associated with a physical
network interface, with another virtual interface, or stand on
its own (e.g., a loopback interface, a point to point protocol
interface). A network interface (physical or virtual) may be
numbered (a network interface with an IP address) or
unnumbered (an network interface without an IP address). A
loopback interface (and its loopback address) is a specific
type of virtual network interface (and IP address) of a node
(physical or virtual) often used for management purposes;
where such an IP address is referred to as the nodal loopback
address. The IP address(es) assigned to the network interface
(s) of a network device, are referred to as IP addresses of that
network device; at a more granular level, the IP address(es)
assigned to network interface(s) assigned to a node imple-
mented on a network device, can be referred to as IP
addresses of that node.

According to one embodiment, storage system 304
includes cache manager 350 to handle requests from threads
323A-323B to access data (e.g., read/write data from/to
storage units 308-309 via cache 340). For example, threads
323A-323B may be created by a file accessing application.
Although two threads are illustrated, it shall be understood
that the present invention is not so limited. In one embodi-
ment, cache 340 is partitioned into a pool of entries. In the
illustrated embodiment, cache 340 is made up of cache
entries 331-336. It shall be understood, however, that cache
340 can be partitioned into more or less cache entries than
shown.

In one embodiment, when cache manager 350 detects a
request from threads 323A-323B to read data from storage,

10

15

20

25

30

35

40

45

50

55

60

65

10

cache manager 350 first checks cache 340. If the requested
data can be found in cache 340 (i.e., a cache hit), the data in
cache 340 is used instead of fetching the requested data from
the storage device, resulting in a faster access. On the other
hand, when cache manager 340 determines that the
requested data does not exist in cache 340 (i.e., a cache
miss), the requested data is fetched from the storage device,
resulting in a slower access. During a cache miss, cache
manager 350 may evict a cache entry in order to make room
for the new requested data. Similarly, when cache manager
350 detects a request from threads 323 A-323B to write data
to storage, cache manager 350 may evict a cache entry to
make room for the write data. As used herein, evicting a
cache entry refers to the reusing of the cache entry to store
new data.

The heuristic used to select the cache entry to evict is
known as the replacement policy. One popular replacement
policy, “least recently used” (LRU), replaces the least
recently used cache entry. As described above, conventional
implementations of the LRU policy suffers from the limi-
tation of multiple threads contending for access to a single
linked list. In one embodiment of the present invention,
storage system 304 overcomes this limitation by including
distributed data structure (DDS) 341.

FIG. 4 is a block diagram illustrating DDS 341 according
to one embodiment. DDS 341 includes data elements 431-
436. More or less data elements, however, can be imple-
mented. In one embodiment, each of data elements 431-436
corresponds to a cache entry. For example, data elements
431-436 can correspond to cache entries 331-336, respec-
tively. In one embodiment, data elements 431-436 include
info 411-416, respectively. Each of info 411-416 can include
information concerning the corresponding cache entries. For
example, info 411 can include information (e.g., a pointer)
linking data element 431 to cache entry 331. Other types of
information can be included as part of info 411-416 without
departing from the broader scope and spirit of the present
invention.

In one embodiment, data elements 431-436 include time-
stamps 421-426, respectively. Each of timestamps 421-426
contains the timestamp of when the corresponding cache
entry was accessed last. For example, timestamps 421-426
can include timestamps of the last access of cache entries
331-336, respectively. In one embodiment, cache manager
350 uses timestamps 421-426 to determine the (approxi-
mate) LRU cache entry for eviction purposes. According to
one embodiment, at least some portions of each of data
elements 431-436 can be atomically accessed. In at least one
embodiment, timestamps 421-426 can each be atomically
accessed.

As used herein, an atomic access refers to an access that
completes in a single step relative to other threads. When an
atomic store (i.e., write) is performed on a shared variable
(e.g., timestamps 421-426), no other thread can observe the
modification half-complete. When an atomic load (i.e., read)
is performed on a shared variable, the thread reads the entire
value as it appeared at a single moment in time. Non-atomic
accesses do not provide these guarantees. Without these
guarantees, lock-free programming would be impossible in
systems where multiple threads concurrently access a shared
variable. Thus, by providing atomic access to data elements
431-436, which is supported by the hardware via atomic
instructions, DDS 341 prevents multiple threads from hav-
ing to contend for access. From the software point of view,
a thread does not have to acquire a software lock. Rather, the
hardware (e.g., central processing unit or CPU) provides an

US 9,460,025 B1

11

atomic access mechanism for such protection, for example,
using a “compare-and-swap” instruction supported by the
CPU.

Referring now back to FIG. 3. In one embodiment,
storage system 304 includes average and standard deviation
(ASD) calculator 342. In one embodiment, ASD calculator
342 is operable to calculate a running average and a running
standard deviation based on timestamps 421-426 as they are
updated. The mathematical computation of an average and
standard deviation are well known in the art. For the sake of
brevity, it will not be described here. According to one
aspect of the invention, cache manager 350 uses ASD
calculator 342 and DDS 341 to determine an approximate
LRU cache entry for eviction purposes.

In one embodiment, when a thread accesses a cache entry,
cache manager 350 locates the corresponding data element
in DDS 341. Cache manager 350 then updates the timestamp
of the located data element with the timestamp of when the
corresponding cache entry was accessed. In one embodi-
ment, in order to determine the approximate LRU cache
entry for eviction, cache manager 350 processes one or more
data elements of DDS 341 to determine the data element
with the smallest, non-zero timestamp among all the pro-
cessed data elements. Alternatively, cache manager 350
processes one or more data elements of DDS 341 to locate
a data element with a timestamp which is non-zero and at
least a predetermined number of (e.g., 3) standard deviations
from the running average. In one embodiment, one thread
can access data element 431, while another thread can access
data element 436 of DDS 341 concurrently, without having
to acquire a lock for locking the corresponding element.
Unlike a single conventional LRU linked list, there is no
insertion or removal of data elements in DDS 341, which
leads to a very efficient cache management operation.

Throughout the description, the processing of elements to
determine an element that is at least a predetermined number
of standard deviations from the running average is described
in the context of LRU. It shall be understood that the same
mechanism is equally applicable to other caching algo-
rithms, including, for example, the least frequently used
(LFU) algorithm.

Once the approximately LRU data element is identified,
cache manager 350 determines whether the timestamp of the
identified data element has changed its value since it was last
read, for example, by performing an operation similar to the
“compare-and-swap” described above. If the timestamp has
not changed value, cache manager 350 updates the time-
stamp with a zero, for example, by performing the “com-
pare-and-swap” operation to swap the current timestamp
with a value of 0 to indicate that the corresponding cache
entry is being evicted. Subsequently, cache manager 350
updates the timestamp with the timestamp of when the
evicted cache entry was populated.

As described above, conventional implementations of the
LRU policy uses a single linked list to represent all the cache
entries in the system. Such an implementation can lead to
multiple threads contending for access to the single linked
list, resulting in an impairment of system performance.
According to one aspect of the invention, storage system 304
overcomes this limitation by including multiple linked lists
351A-351B for maintaining information concerning cache
340. Each of linked lists 351A-351B can correspond to one
or more of threads 323A-323B that access cache 340. By
way of example, linked list 351A can correspond to thread
323A, and linked list 351B can correspond to thread 323B.

10

15

20

25

30

35

40

45

50

55

60

65

12

By way of further example, linked list 351A and/or linked
list 351B can each correspond to multiple of threads 323 A-
323B.

FIG. 5 is a block diagram illustrating multiple linked lists
351A-351B according to one embodiment. Each of the
linked lists corresponds to one of the threads accessing the
cache. Although two linked lists are illustrated, it shall be
understood that more linked lists can be implemented.
Linked list 351A is shown, for illustrative purpose and not
limitation, as having linked list elements 531-533. Linked
list 351B is shown, for illustrative purpose and not limita-
tion, as having linked list elements 534-536. More or less
linked list elements can be implemented. In one embodi-
ment, each of linked list elements 531-536 corresponds to a
cache entry. For example, linked list elements 531-536
correspond to cache entries 331-336, respectively.

In one embodiment, linked list elements 531-536 include
info 511-516, respectively. Each of info 511-516 can include
information concerning the corresponding cache entries. For
example, info 511 can include information (e.g., a pointer)
linking element 531 to cache entry 331. Each of info
511-516 can also include information to link the elements
together. For example, info 512 can include information
(e.g., a pointer) linking linked list element 532 to next linked
list element 533. Info 512 can also include information
linking element 532 to previous element 531. Singularly-
linked lists, however, only contain within each of its ele-
ments information linking it to the next element. For
example, if linked list 351 A was singularly linked, info 512
would only contain information pointing to next element
533. Each linked list includes a head pointer data structure
that contains information (e.g., a pointer) pointing to its head
element. In the illustrated example, head pointers 540 and
541 contain information pointing to head elements 531 and
534, respectively.

Each of info 511-516 can also include information indi-
cating whether a corresponding linked list element is locked.
For example, info 511 can include information indicating
whether linked list element 531 is locked. As used herein,
when a linked list element is locked, only the thread which
locked it can access the linked list element. Other types of
information can be included as part of info 511-516 without
departing from the broader scope and spirit of the present
invention.

In one embodiment, linked list elements 531-536 include
timestamps 521-526, respectively. Each of timestamps 521-
526 contains the timestamp of when the corresponding
cache entry was accessed last. For example, timestamps
521-526 can include timestamps of the last access of cache
entries 331-336, respectively. In one embodiment, cache
manager 350 uses timestamps 521-526 to determine the
(approximate) LRU cache entry for eviction purposes.

Each of linked lists 351A-351B includes a head element
and a tail element. In the illustrated example, linked list
elements 531 and 533 are the head and tail elements of
linked list 351A, respectively. Linked list elements 534 and
536 are the head and tail elements of linked list 351B,
respectively. In one embodiment, the head element corre-
sponds to the MRU cache entry among all cache entries of
that linked list, and the tail element corresponds to the LRU
cache entry among all cache entries of that linked list. For
example, as illustrated, the cache entry corresponding to
linked list element 531 is the MRU cache entry among all
cache entries corresponding to the elements of linked list
351A, and the cache entry corresponding to linked list
element 533 is the LRU cache entry among all cache entries
corresponding to the elements of linked list 351A.

US 9,460,025 B1

13

Referring now back to FIG. 3. In one embodiment, when
a thread accesses a cache entry, cache manager 350 locates
the corresponding linked list element in one of linked lists
351A-351B, and moves it to the head of the linked list
corresponding to the thread that is accessing the cache entry.
A linked list element can be moved from one thread to
another/different or same thread. Cache manager 350 then
updates the timestamp of the moved linked list element with
a timestamp of when the corresponding cache entry was
accessed.

In one embodiment, in order to determine the approxi-
mate LRU cache entry for eviction, cache manager 350
processes one or more tail elements of linked lists 351A-
351B to determine the tail element with the smallest time-
stamp among the processed tail elements. Once the tail
element with the oldest timestamp is identified, the corre-
sponding cache entry is evicted, and new data is populated.
Cache manager 350 then moves the identified tail element to
the head of the linked list corresponding to the thread that
evicted the cache entry. Evicting tail elements are described
in further details below.

As described above, a conventional implementation of the
LRU policy uses a single linked list. Such an implementa-
tion results in a contention for the single linked list whenever
multiple threads concurrently access the cache. Embodi-
ments of the present invention overcome this limitation by
maintaining multiple linked lists, each corresponding to one
of the multiple threads. In this way, contention for the same
thread can be minimized.

Throughout the description, each of linked lists 351A-
351B is described as corresponding to a single thread. It
shall be understood, however, that one or more of linked lists
351A-351B can correspond to multiple threads. For
example, storage system 304 may include N threads and M
linked lists. In the case where M<N, multiple threads can
map to the same linked list. In such an embodiment, the least
significant bits of the thread_id can be used to map a thread
to the linked list. In such an embodiment, contention for
access to the linked lists would still be reduced as compared
to a conventional implementation of just a single linked list.
It is also possible for M>N (more lists than threads), for
example, because one or more threads have exited (i.e., been
de-allocated by the system), leaving behind a dead linked list
of elements that is not associated with any active thread.
According to one embodiment, in such a scenario, cache
manager 350 evicts the cache entries corresponding to the
elements of the dead linked lists first, even though they may
not be the LRU. Alternatively, the cache manager may
merge (i.e., link) the dead linked list to a live linked list. For
example, a dead linked list may be merged to the tail of a live
linked list.

FIGS. 6A-6B are block diagrams illustrating DDS 341
according to one embodiment. DDS 341 includes data
elements 431-436, wherein each data element corresponds
to a cache entry (e.g., one of cache entries 331-336). In
FIGS. 6A-6B, each data element is shown with a letter
followed by a colon and a number (e.g., “A:10”). Here, the
letter represents the content currently stored at the corre-
sponding cache entry, and the number represents the time-
stamp of when the corresponding cache entry was last
accessed. Thus, in the example “A:10”, the data element
corresponds to a cache entry which contains content “A”,
which was accessed at time “10”. As illustrated in FIG. 6A,
data elements 431-436 contain the content:timestamps of
A:10, B:9, C:7, D:5, E:3, and F:1, respectively.

Referring now to FIG. 6B, which illustrates multiple
threads concurrently accessing DDS 341. In the illustrated

10

15

20

25

30

35

40

45

50

55

60

65

14

example, cache manager 350 receives a request from a first
thread (e.g., thread 323A) to access content C at time 11,
which is stored at the cache entry corresponding to data
element 433. Thus, cache manager 350 atomically updates
data element 433 with the timestamp of when the cache
entry was accessed (i.e., 11). In this example, cache manager
350 also receives a request from a second thread (e.g., thread
323B) to write content G. In response to determining there
is no available cache entry, cache manager 350 determines
the cache entry corresponding to data element 436 is the
LRU. Accordingly, cache manager 350 evicts content F from
the cache entry corresponding to data element 436 and stores
content G at time 11. Thus, cache manager 350 atomically
updates data element 436 with the timestamp of when the
cache entry was populated (i.e., 11). The updating of DDS
341 by the two threads can occur simultaneously without
requiring either thread to wait for the other.

FIG. 7 is a flow diagram illustrating method 700 for
minimizing contention when performing cache eviction in a
multi-threaded system. For example, method 700 can be
performed by cache manager 350, which can be imple-
mented as software, firmware, hardware, or any combination
thereof. The operations of this and other flow diagrams will
be described with reference to the exemplary embodiments
of'the other diagrams. However, it should be understood that
the operations of the flow diagrams can be performed by
embodiments of the invention other than those discussed
with reference to these other diagrams, and the embodiments
of the invention discussed with reference to these other
diagrams can perform operations different than those dis-
cussed with reference to the flow diagrams. FIG. 7 will now
be described with reference to the example illustrated in
FIGS. 6A-6B.

Referring now to FIG. 7. At block 705, cache manager
350 receives a request from a thread to access data. For
example, cache manager 350 receives a request from thread
323A to access content C at time 11. At block 710, cache
manager 350 determines whether there is a cache hit. At
block 715, in response to determining there is a cache hit,
cache manager 350 accesses data from the cache entry
containing the requested data. For example, cache manager
350 determines that content C is currently stored at the cache
entry corresponding to data element 433, and access content
C from the cache entry. At block 720, cache manager 350
atomically updates the DDS element corresponding to the
accessed cache entry to indicate the cache entry has been
recently accessed, without locking out other threads. For
example, cache manager 350 atomically updates accessed
data element 433 with a timestamp of 11 without preventing
evicted data element 436 from being concurrently updated
with a timestamp of 12.

Returning now back to block 710. In response to deter-
mining there is no cache hit, cache manager 350 transitions
from block 710 to block 725 and determines whether a cache
entry is available for use. At block 730, in response to
determining a cache entry is available, cache manager 350
accesses the requested data from storage and populates the
requested data in the available cache entry. At block 735,
cache manager 350 atomically updates the DDS element
corresponding to the newly populated cache entry to indicate
the cache entry has been recently accessed, without locking
out other threads.

Referring now back to block 725. In response to deter-
mining there is no cache entry available to cache the
requested data, cache manager 350 transitions to block 740.
At block 740, cache manager 350 determines the oldest
cache entry and evicts it. As part of block 740, cache

US 9,460,025 B1

15

manager 350 accesses the requested data from storage and
populates the requested data in the evicted cache entry. At
block 745, cache manager 350 atomically updates the DDS
element corresponding to the evicted cache entry to indicate
the cache entry has been recently accessed, without locking
out other threads. At block 750, the cache manager provides
the accessed data to the requesting thread.

FIG. 8 is a flow diagram illustrating method 800 for
minimizing contention when performing cache eviction in a
multi-threaded system. For example, method 800 can be
performed by cache manager 350, which can be imple-
mented as software, firmware, hardware, or any combination
thereof. FIG. 8 will now be described with reference to the
example illustrated in FIGS. 6A-6B. At block 805, cache
manager 350 receives a request from a thread to write data
to storage. For example, cache manager 350 receives a
request from thread 323B to write content G at time 12. At
block 810, cache manager 350 determines whether there is
an available cache entry to cache the write data. At block
815, in response to determining there is an available cache
entry, cache manager 350 populates the write data in the
available cache entry. At block 820, cache manager 350
atomically updates the DDS element corresponding to the
available (and newly populated) cache entry to indicate the
cache entry has been recently accessed, without locking out
other threads.

Returning now back to block 810. In response to deter-
mining there is no cache entry available, cache manager 350
transitions to block 825. At block 825, cache manager 350
determines the oldest cache entry, and evicts it. For example,
cache manager 350 determines the cache entry correspond-
ing to data element 436 is the LRU and evicts it. As part of
block 825, cache manager 350 populates the write data in the
evicted cache entry. For example, cache manager 350 evicts
content F from the cache entry corresponding to data ele-
ment 436, and populates the cache entry with content G at
time 12.

At block 830, cache manager 350 atomically updates the
DDS element corresponding to the evicted cache entry to
indicate the cache entry has been recently accessed, without
locking out other threads. For example, cache manager 350
updates evicted data element 436 with a timestamp of 12
without preventing data element 433 from being concur-
rently updated with a timestamp of 11. At block 835, cache
manager 350 writes the data to storage.

FIG. 9 is a flow diagram illustrating method 900 for
determining an approximately LRU cache entry according to
one embodiment. For example, method 900 can be per-
formed by cache manager 350, which can be implemented
in software, firmware, hardware, or any combination
thereof. The operations of method 900, for example, can be
performed as part of blocks 740 and 825 of FIGS. 7 and 8,
respectively.

Referring now to FIG. 9, at block 905, cache manager 350
receives a request to determine an oldest cache entry. At
block 910, cache manager 350 selects a subset of the DDS
elements. In one embodiment, cache manager 350 selects a
subset of DDS elements which contains at least one DDS
element which was not included in a subset of DDS previ-
ously selected. By selecting only a subset of the DDS to
process, cache manager 350 reduces the amount of time
required to determine the oldest cache entry. The identified
cache entry may not, however, be truly the oldest (i.e., LRU)
cache entry. Rather, the identified cache entry may only be
an approximately LRU cache entry.

At block 915, cache manager 350 identifies a first DDS
element within the selected subset that has a timestamp

30

40

45

55

65

16

which is non-zero and at least a predetermined number of
standard deviations from the running average. At block 920,
cache manager 350 determines whether at least one DDS
element was identified from the subset which has a time-
stamp that is non-zero and at least a predetermined number
of standard deviations from the running average. If so, at
block 930, cache manager 350 determines whether the
timestamp of the identified DDS element has changed value
since it was last read as part of the selected subset of DDS.
If the timestamp has changed value, cache manager 350
returns to block 910 to select another subset of DDS.
Otherwise, cache manager 350 transitions from block 930 to
block 935. At block 935, cache manager 350 selects the
cache entry corresponding to the identified DDS element as
the approximately LRU cache entry.

At block 925, in response to determining none of the DDS
elements of the selected subset has a timestamp which is
non-zero and at least a predetermined number of standard
deviations from the running average, cache manager 350
identifies a DDS element with a non-zero and smallest
timestamp among all DDS elements of the subset. Cache
manager 350 selects the cache entry corresponding to the
DDS element with a non-zero and smallest timestamp as the
approximately LRU cache entry. Cache manager 350 then
transitions from block 925 to block 930 to perform opera-
tions as described above.

In an alternate embodiment, cache manager 350 may
determine the approximately LRU cache entry by simply
transitioning from block 905 to block 925. In other words,
cache manager 350 does not attempt to determine the
approximately LRU cache entry by first identifying a DDS
element which has a timestamp that is non-zero and at least
a predetermined number of standard deviations from the
running average. Also, it should be generally understood that
steps 915 and steps 925 can be processed concurrently.

FIG. 10 is a flow diagram illustrating method 1000 for
updating a DDS element to indicate a corresponding cache
entry has recently been accessed, according to one embodi-
ment. For example, method 1000 can be performed by cache
manager 350, which can be implemented in software, firm-
ware, hardware, or any combination thereof. The operations
of method 1000, for example, can be performed as part of
blocks 720, 735, 745 of FIG. 7, and blocks 820 and 830 of
FIG. 8.

Referring now to FIG. 10, at block 1005, cache manager
350 receives a request to atomically update a DDS element.
At optional block 1010, cache manager 350 atomically
updates the timestamp of the DDS element to zero to
indicate that the cache entry is being evicted in order to
prevent the cache entry corresponding to the DDS element
from being evicted by another thread. At block 1015, cache
manager 350 atomically updates the timestamp of the DDS
element with a timestamp of when the cache entry corre-
sponding to the DDS element was inserted or accessed.

In one embodiment, in the case where the DDS element
is not being evicted, optional block 1010 is not performed.
For example, in the case where the DDS element is being
updated after its corresponding cache entry has been read
from, cache manager 350 may simply perform the opera-
tions of block 1015 without performing the operations of
block 1010.

FIG. 11 is a timeline diagram illustrating multiple threads
accessing the DDS without contention according to one
embodiment. During time period 1110, a first thread atomi-
cally updates a DDS element without locking out other
threads. During time period 1115, a second thread atomically
updates a DDS element without locking out other threads.

US 9,460,025 B1

17
The DDS elements updated by the first and second thread
may be the same or different DDS elements. In one embodi-
ment, time periods 1110 and 1115 overlap, i.e., the first and
second thread can concurrently and atomically update the
DDS elements. In this way, the threads are not stalled, and
system performance is enhanced.

FIGS. 12A-12B are block diagrams illustrating linked
lists 351A-351B according to one embodiment. Linked lists
351A-351B include linked list elements 531-538, wherein
each linked list element corresponds to a cache entry. In
FIGS. 12A-12B, each linked list element is shown with a
letter followed by a colon and a number (e.g., “A:10”). Here,
the letter represents the content currently stored at the
corresponding cache entry, and the number represents the
timestamp of when the corresponding cache entry was last
accessed. Thus, in the example “A:10”, the linked list
element corresponds to a cache entry which contains content
“A”, which was accessed at time “10”. As illustrated in FIG.
12A, linked list elements 531-538 contain the content:
timestamps of A:10, B:9, C:7, D:6, E:5, F:4, G:3, and H:2,
respectively.

In the example illustrated in FIG. 12A, linked list 351A
corresponds to thread 323A, and linked list 351B corre-
sponds to thread 323B. Linked list elements 531 and 534 are
the head and tail elements of linked list 351A, respectively.
Linked list elements 535 and 538 are the head and tail
elements of linked list 351B, respectively.

Referring now to FIG. 12B, which illustrates multiple
threads concurrently accessing linked lists 351A-351B. In
the illustrated example, cache manager 350 receives a
request from a first thread (e.g., thread 323B) to access
content C at time 11, which is stored at the cache entry
corresponding to data element 533. In one embodiment,
cache manager 350 locks linked list element 533, adjacent
linked list elements 532 and 534, and head pointer 541 to
prevent other threads from updating the respective elements.
Cache manager 350 removes element 533 from linked list
323A and inserts it at the head of linked list 351B. Cache
manager 350 updates linked list element 533 with the
timestamp of when the cache entry was accessed (i.e., 11).
Cache manager 350 links element 533 to element 535,
updates head pointer 541 with information pointing to the
new head element (i.e., element 533), and unlocks head
pointer 541. Cache manager 350 then relinks and unlocks
adjacent elements 532 and 534.

In this example, cache manager 350 also receives a
request from a second thread (e.g., thread 323A) to write
content I at time 11. In response to determining there is no
available cache entry, cache manager 350 determines the
cache entry corresponding to data element 538 is the LRU
and evicts its corresponding cache entry. In one embodi-
ment, cache manager 350 locks linked list element 538,
adjacent linked list element 537, and head pointer 540 to
prevent other threads from updating the respective elements.
Cache manager 350 removes element 538 from linked list
323B and inserts it at the head of linked list 351A. Cache
manager 350 updates linked list element 538 with the
timestamp of when the cache entry was populated (i.e., 11).
Cache manager 350 links element 538 to element 531,
updates head pointer 540 with information pointing to the
new head element (i.e., element 538), and unlocks head
pointer 540. Cache manager 350 then relinks and unlocks
adjacent element 537. The element locking mechanism
described above assumes that linked lists 351 A and 351B are
not singularly linked. In the case where linked lists 351 A and
351B were singularly linked, only the target linked list
element and its previous element are locked. The next

5

10

15

20

25

30

35

40

45

50

55

60

18

element, however, is not locked. By way of example, if
linked list 351 A was singularly linked, element 534 would
not be locked when element 533 is being updated. The
updating of linked lists 351 A and 351B in the above example
by the two threads can occur simultaneously without requir-
ing either thread to wait for the other. Thus, contrary to a
conventional implementation of the LRU policy, threads are
not stalled.

Note that although there may be more locks in the present
invention, the probability of contention is still lower than a
conventional LRU implementation because the threads are
not stalled unless they are accessing the same data. In the
above example, other threads would be stalled only if they
access content A, B, D, E, or G in cache entries correspond-
ing to linked list elements 531, 532, 534, 535, and 537,
respectively. The probability of threads accessing the same
data is low. It may appear that elements 531, 532, 534, 535,
and 537 make up the majority of linked lists 351 A and 351B,
and thus, it may appear that the probability of contention is
high. It shall be noted, however, that linked lists 351A and
351B may comprise of many more elements than illustrated.
Thus, the probability of multiple threads contending for the
same elements is quite low in practice. In contrast, under the
conventional single linked list approach, all threads are
stalled whenever any single thread is accessing any content
in any cache entry in the system because there is only one
single linked list.

FIG. 13 is a flow diagram illustrating method 1300 for
minimizing contention when performing cache eviction in a
multi-threaded system. For example, method 1300 can be
performed by cache manager 350, which can be imple-
mented as software, firmware, hardware, or any combination
thereof. FIG. 13 will now be described with reference to the
example illustrated in FIG. 12A-12B.

Referring now to FIG. 13. At block 1305, cache manager
350 receives a request from a thread to access data. For
example, cache manager 350 receives a request from thread
323B to access content Cat time 11. At block 1310, cache
manager 350 determines whether there is a cache hit. At
block 1315, in response to determining there is a cache hit,
cache manager 350 accesses data from the cache entry
containing the requested data. For example, cache manager
350 accesses content C from cache entry corresponding to
linked list element 533. At block 1320, cache manager 350
updates the linked list element corresponding to the accessed
cache entry to indicate the cache entry has been recently
accessed. For example, cache manager 350 updates accessed
linked list element 533 with a timestamp of 11.

Returning now back to block 1310. In response to deter-
mining there is no cache hit, cache manager 350 transitions
from block 1310 to block 1325 and determines whether a
cache entry is available for use. At block 1330, in response
to determining a cache entry is available, cache manager 350
accesses the requested data from storage and populates the
requested data in the available cache entry. At block 1335,
cache manager 350 updates the linked list element corre-
sponding to the newly populated cache entry to indicate the
cache entry has been recently accessed.

Referring now back to block 1325. In response to deter-
mining there is no cache entry available to cache the
requested data, cache manager 350 transitions to block 1340.
At block 1340, cache manager 350 determines the oldest
cache entry and evicts it. As part of block 1340, cache
manager 350 accesses the requested data from storage and
populates the requested data in the evicted cache entry. At
block 1345, cache manager 350 updates the linked list
element corresponding to the evicted cache entry to indicate

US 9,460,025 B1

19

the cache entry has been recently accessed. At block 1350,
cache manager 350 provides the requested data to the thread.

FIG. 14 is a flow diagram illustrating method 1400 for
minimizing contention when performing cache eviction in a
multi-threaded system. For example, method 1400 can be
performed by cache manager 350, which can be imple-
mented as software, firmware, hardware, or any combination
thereof. FIG. 14 will now be described with reference to the
example illustrated in FIG. 12A-12B. At block 1405, cache
manager 350 receives a request from a thread to write data
to storage. For example, cache manager 350 receives a
request from thread 323A to write content I at time 12. At
block 1410, cache manager 350 determines whether there is
an available cache entry to cache the write data. At block
1415, in response to determining there is an available cache
entry, cache manager 350 populates the write data in the
available cache entry. At block 1420, cache manager 350
updates the linked list element corresponding to the avail-
able (and newly populated) cache entry to indicate the cache
entry has been recently accessed.

Returning now back to block 1410. In response to deter-
mining there is no cache entry available, cache manager 350
transitions to block 1425. At block 1425, cache manager 350
determines the oldest cache entry, and evicts it. For example,
cache manager 350 determines the cache entry correspond-
ing to linked list element 538 is the (approximate) LRU and
evicts it. As part of block 1425, cache manager 350 popu-
lates the write data in the evicted cache entry. For example,
cache manager 350 evicts content H from the cache entry
corresponding to linked list element 538, and populates the
cache entry with content I at time 12.

At block 1430, cache manager 350 updates the linked list
element corresponding to the evicted cache entry to indicate
the cache entry has been recently accessed. For example,
cache manager 350 updates evicted linked list element 538
with a timestamp of 12 without preventing linked list
element 533 from being concurrently updated with a time-
stamp of 11. At block 1435, cache manager 350 writes the
data to storage.

FIG. 15 is a flow diagram illustrating method 1500 for
determining an approximately LRU cache entry according to
one embodiment. For example, method 1500 can be per-
formed by cache manager 350, which can be implemented
in software, firmware, hardware, or any combination
thereof. The operations of method 1500, for example, can be
performed as part of blocks 1340 and 1425 of FIGS. 13 and
14, respectively.

Referring now to FIG. 15, at block 1505, cache manager
350 receives a request to determine an oldest cache entry. At
block 1510, cache manager 350 selects a subset of the tail
elements. In one embodiment, cache manager 350 selects a
subset of tail elements which contains at least one tail
element which was not included in a subset of tail elements
previously selected. By selecting only a subset of the tail
elements to process, cache manager 350 reduces the amount
of time required to determine the oldest cache entry. The
identified cache entry may not, however, be truly the oldest
(i.e., LRU) cache entry. Rather, the identified cache entry
may only be an approximately LRU cache entry. At block
1515, cache manager 350 processes the selected subset of
tail elements to identify a tail element that has a smallest
timestamp. At block 1520, cache manager 350 selects the
cache entry corresponding to the identified tail element as
the approximately LRU cache entry.

FIG. 16 is a flow diagram illustrating method 1600 for
updating a linked list element to indicate a corresponding
cache entry has recently been accessed, according to one

20

25

40

45

55

20

embodiment. For example, method 1600 can be performed
by cache manager 350, which can be implemented in
software, firmware, hardware, or any combination thereof.
The operations of method 1600, for example, can be per-
formed as part of blocks 1320, 1335, 1345 of FIG. 13, and
blocks 1420 and 1430 of FIG. 14. FIG. 16 will now be
described with reference to the example illustrated in FIGS.
12A-12B.

Referring now to FIG. 16, at block 1605, cache manager
350 receives a request to update a linked list element. For
example, cache manager 350 receives a request from thread
351B to update linked list element 533, or a request from
thread 351A to update linked list element 538. At block
1610, cache manager 350 locks the requested linked list
element and its adjacent linked list elements to prevent other
threads from updating them. For example, in response to a
request from thread 351B to update linked list element 533,
cache manager 350 locks adjacent elements 532 and 534 of
linked list 351A. By way of further example, in response to
a request from thread 351A to update linked list element
538, cache manager 350 locks adjacent element 537 of
linked list 351B.

At block 1615, cache manager 350 locks the head of the
linked list corresponding to the thread that requested the
update to be made to the linked list element. For example,
in response to the request from thread 323 A, cache manager
350 locks head element 531. By way of further example, in
response to the request from thread 323B, cache manager
350 locks head element 535. At block 1620, cache manager
350 moves the requested linked list element to the head of
the linked list corresponding to the thread that requested the
update to be made to the linked list element. For example,
in response to the request from thread 323 A, cache manager
350 moves linked list element 538 from linked list 351B to
the head of linked list 351 A. By way of further example, in
response to the request from thread 323B, cache manager
350 moves linked list element 533 from linked list 351A to
the head of linked list 351B.

At block 1625, cache manager 350 updates the timestamp
of the moved linked list element with the time of when the
corresponding cache entry was accessed. For example,
cache manager 350 updates timestamp of linked list element
533 with a timestamp of 11, and updates the timestamp of
linked list element 538 with a timestamp of 12. At block
1630, cache manager 350 re-links the linked list elements
that were adjacent to the moved linked list elements, and
unlocks the locked linked list elements in order to allow
other threads to update them. For example, cache manager
350 unlocks linked list elements 531, 532, 533, 534, 535,
537, and 538.

FIG. 17 is a timeline diagram illustrating multiple threads
accessing the linked lists without contention according to
one embodiment. During time period 1710, a first thread
updates a linked list element. During time period 1715, a
second thread updates another linked list element. In one
embodiment, time periods 1710 and 1715 overlap, i.e., the
first and second thread can concurrently update the linked
list elements. In this way, the threads are not stalled, and
system performance is enhanced.

Throughout the description, embodiments of the present
invention have been described in the context of LRU. One
having ordinary skill in the art would recognize, however,
that the invention is not so limited. For example, the
embodiments described herein can be extended to any type
of sorted list, including but not limited to, MRU.

FIG. 18 is a block diagram illustrating a deduplication
storage system according to one embodiment of the inven-

US 9,460,025 B1

21

tion. For example, deduplication storage system 1800 may
be implemented as part of a deduplication storage system as
described above, such as, for example, the deduplication
storage system as shown in FIG. 1. In one embodiment,
storage system 1800 may represent a file server (e.g., an
appliance used to provide network attached storage (NAS)
capability), a block-based storage server (e.g., used to pro-
vide SAN capability), a unified storage device (e.g., one
which combines NAS and SAN capabilities), a nearline
storage device, a direct attached storage (DAS) device, a
tape backup device, or essentially any other type of data
storage device. Storage system 1800 may have a distributed
architecture, or all of its components may be integrated into
a single unit. Storage system 1800 may be implemented as
part of an archive and/or backup system such as a dedupli-
cating storage system available from EMC® Corporation of
Hopkinton, Mass.

In one embodiment, storage system 1800 includes a
deduplication engine 1801 interfacing one or more clients
1814 with one or more storage units 1810 storing metadata
1816 and data objects 1818. Clients 1814 may be any kinds
of clients, such as, for example, a client application, backup
software, or a garbage collector, located locally or remotely
over a network. A network may be any type of networks such
as a local area network (LAN), a wide area network (WAN)
such as the Internet, a corporate intranet, a metropolitan area
network (MAN), a storage area network (SAN), a bus, or a
combination thereof, wired and/or wireless.

Storage devices or units 1810 may be implemented
locally (e.g., single node operating environment) or
remotely (e.g., multi-node operating environment) via an
interconnect, which may be a bus and/or a network. In one
embodiment, one of storage units 1810 operates as an active
storage to receive and store external or fresh user data, while
the another one of storage units 1810 operates as a target
storage unit to periodically archive data from the active
storage unit according to an archiving policy or scheme.
Storage units 1810 may be, for example, conventional
magnetic disks, optical disks such as CD-ROM or DVD
based storage, magnetic tape storage, magneto-optical (MO)
storage media, solid state disks, flash memory based
devices, or any other type of non-volatile storage devices
suitable for storing large volumes of data. Storage units 1810
may also be combinations of such devices. In the case of
disk storage media, the storage units 1810 may be organized
into one or more volumes of redundant array of inexpensive
disks (RAID). Data stored in the storage units may be stored
in a compressed form (e.g., lossless compression: HUFF-
MAN coding, LEMPEL-ZIV WELCH coding; delta encod-
ing: a reference to a segment plus a difference; etc.). In one
embodiment, different storage units may use different com-
pression methods (e.g., main or active storage unit from
other storage units, one storage unit from another storage
unit, etc.).

The metadata, such as metadata 1816, may be stored in at
least some of storage units 1810, such that files can be
accessed independent of another storage unit. Metadata of
each storage unit includes enough information to provide
access to the files it contains. In one embodiment, metadata
may include fingerprints contained within data objects 1818,
where a data object may represent a data segment, a com-
pression region (CR) of data segments, or a container of one
or more CRs. Fingerprints are mapped to a particular data
object via metadata 1816, enabling the system to identify the
location of the data object containing a segment represented
by a particular fingerprint. When an active storage unit fails,
metadata contained in another storage unit may be utilized

30

40

45

22

to recover the active storage unit. When one storage unit is
unavailable (e.g., the storage unit has failed, or is being
upgraded, etc.), the system remains up to provide access to
any file not stored in the failed storage unit. When a file is
deleted, the metadata associated with the files in the system
is updated to reflect that the file has been deleted.

In one embodiment, the metadata information includes a
file name, a storage unit identifier identifying a storage unit
in which the segments associated with the file name are
stored, reconstruction information for the file using the
segments, and any other appropriate metadata information.
In one embodiment, a copy of the metadata is stored on a
storage unit for files stored on a storage unit so that files that
are stored on the storage unit can be accessed using only the
information stored on the storage unit. In one embodiment,
a main set of metadata information can be reconstructed by
using information of other storage units associated with the
storage system in the event that the main metadata is lost,
corrupted, damaged, etc. Metadata for a storage unit can be
reconstructed using metadata information stored on a main
storage unit or other storage unit (e.g., replica storage unit).
Metadata information further includes index information
(e.g., location information for segments in storage units,
identifying specific data objects).

In one embodiment, deduplication storage engine 1801
includes file service interface 1802, segmenter 1804, dupli-
cate eliminator 1806, file system control 1808, and storage
unit interface 1812. Deduplication storage engine 1801
receives a file or files (or data item(s)) via file service
interface 1802, which may be part of a file system
namespace 1820 of a file system associated with the dedu-
plication storage engine 1801. The file system namespace
1820 refers to the way files are identified and organized in
the system. An example is to organize the files hierarchically
into directories or folders, which may be managed by
directory manager 1822. File service interface 1802 supports
a variety of protocols, including a network file system
(NFS), a common Internet file system (CIFS), and a virtual
tape library interface (VTL), etc.

The file(s) is/are processed by segmenter 1804 and file
system control 1808. Segmenter 1804, also referred to as a
content store, breaks the file(s) into variable-length seg-
ments based on a variety of rules or considerations. For
example, the file(s) may be broken into segments by iden-
tifying segment boundaries using a content-based technique
(e.g., a function is calculated at various locations of a file,
when the function is equal to a value or when the value is a
minimum, a maximum, or other value relative to other
function values calculated for the file), a non-content-based
technique (e.g., based on size of the segment), or any other
appropriate technique. In one embodiment, a segment is
restricted to a minimum and/or maximum length, to a
minimum or maximum number of segments per file, or any
other appropriate limitation.

In one embodiment, file system control 1808, also
referred to as a file system manager, processes information
to indicate the segment(s) association with a file. In some
embodiments, a list of fingerprints is used to indicate seg-
ment(s) associated with a file. File system control 1808
passes segment association information (e.g., representative
data such as a fingerprint) to index 1824. Index 1824 is used
to locate stored segments in storage units 1810 via storage
unit interface 1812. Duplicate eliminator 1806, also referred
to as a segment store, identifies whether a newly received
segment has already been stored in storage units 1810. In the
event that a segment has already been stored in storage
unit(s), a reference to the previously stored segment is

US 9,460,025 B1

23

stored, for example, in a segment tree associated with the
file, instead of storing the newly received segment. A
segment tree of a file may include one or more nodes and
each node represents or references one of the deduplicated
segments stored in storage units 1810 that make up the file.
Segments are then packed by a container manager (which
may be implemented as part of storage unit interface 1812)
into one or more storage containers stored in storage units
1810. The deduplicated segments may be further com-
pressed into one or more CRs using a variation of compres-
sion algorithms, such as a Lempel-Ziv algorithm before
being stored. A container may contains one or more CRs and
each CR may contain one or more deduplicated segments. A
container may further contain the metadata such as finger-
prints, type of the data segments, etc. that are associated with
the data segments stored therein.

When a file is to be retrieved, file service interface 1802
is configured to communicate with file system control 1808
to identify appropriate segments stored in storage units 1810
via storage unit interface 1812. Storage unit interface 1812
may be implemented as part of a container manager. File
system control 1808 communicates (e.g., via segmenter
1804) with index 1824 to locate appropriate segments stored
in storage units via storage unit interface 1812. Appropriate
segments are retrieved from the associated containers via the
container manager and are used to construct the requested
file. The file is provided via interface 1802 in response to the
request. In one embodiment, file system control 1808 uti-
lizes a tree (e.g., a segment tree obtained from namespace
1820) of content-based identifiers (e.g., fingerprints) to
associate a file with data segments and their locations in
storage unit(s). In the event that a segment associated with
a given file or file changes, the content-based identifiers will
change and the changes will ripple from the bottom to the
top of the tree associated with the file efficiently since the
appropriate content-based identifiers are easily identified
using the tree structure. Note that some or all of the
components as shown as part of deduplication engine 1801
may be implemented in software, hardware, or a combina-
tion thereof. For example, deduplication engine 1801 may
be implemented in a form of executable instructions that can
be stored in a machine-readable storage medium, where the
instructions can be executed in a memory by a processor.

In one embodiment, storage system 1800 may be used as
a tier of storage in a storage hierarchy that comprises other
tiers of storage. One or more tiers of storage in this hierarchy
may utilize different kinds of storage devices and/or may be
optimized for different characteristics such as random
update performance. Files are periodically moved among the
tiers based on data management policies to achieve a cost-
effective match to the current storage requirements of the
files. For example, a file may initially be stored in a tier of
storage that offers high performance for reads and writes. As
the file ages, it may be moved into a tier of storage according
to one embodiment of the invention. In various embodi-
ments, tiers include different storage technologies (e.g., tape,
hard drives, semiconductor-based memories, optical drives,
etc.), different locations (e.g., local computer storage, local
network storage, remote network storage, distributed stor-
age, cloud storage, archive storage, vault storage, etc.), or
any other appropriate storage for a tiered data storage
system.

An electronic device or a computing device (e.g., an end
station, a network device) stores and transmits (internally
and/or with other electronic devices over a network) code
(composed of software instructions) and data using
machine-readable media, such as non-transitory machine-

10

15

20

25

30

35

40

45

50

55

60

65

24

readable media (e.g., machine-readable storage media such
as magnetic disks; optical disks; read only memory; flash
memory devices; phase change memory) and transitory
machine-readable transmission media (e.g., electrical, opti-
cal, acoustical or other form of propagated signals—such as
carrier waves, infrared signals). In addition, such electronic
devices include hardware, such as a set of one or more
processors coupled to one or more other components—e.g.,
one or more non-transitory machine-readable storage media
(to store code and/or data) and network connections (to
transmit code and/or data using propagating signals), as well
as user input/output devices (e.g., a keyboard, a touchscreen,
and/or a display) in some cases. The coupling of the set of
processors and other components is typically through one or
more interconnects within the electronic devices (e.g., bus-
ses and possibly bridges). Thus, a non-transitory machine-
readable medium of a given electronic device typically
stores instructions for execution on one or more processors
of that electronic device. One or more parts of an embodi-
ment of the invention may be implemented using different
combinations of software, firmware, and/or hardware.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of transactions on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of transactions
leading to a desired result. The transactions are those requir-
ing physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method transactions. The required
structure for a variety of these systems will appear from the
description above. In addition, embodiments of the present
invention are not described with reference to any particular
programming language. It will be appreciated that a variety
of programming languages may be used to implement the
teachings of embodiments of the invention as described
herein.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exem-

US 9,460,025 B1

25

plary embodiments thereof. It will be evident that various
modifications may be made thereto without departing from
the broader spirit and scope of the invention as set forth in
the following claims. The specification and drawings are,
accordingly, to be regarded in an illustrative sense rather
than a restrictive sense.

Throughout the description, embodiments of the present
invention have been presented through flow diagrams. It will
be appreciated that the order of transactions and transactions
described in these flow diagrams are only intended for
illustrative purposes and not intended as a limitation of the
present invention. One having ordinary skill in the art would
recognize that variations can be made to the flow diagrams
without departing from the broader spirit and scope of the
invention as set forth in the following claims.

What is claimed is:
1. A computer-implemented method for minimizing con-
tention among multiple threads for determining a least
recently used cache entry, the method comprising:
maintaining a plurality of linked lists of elements, includ-
ing a first linked list of elements for a first thread and
a second linked list of elements for a second thread,
each linked list corresponding to one of a plurality of
threads accessing one or more cache entries of a
plurality of cache entries, each element of each linked
list corresponding to one of the plurality of cache
entries, wherein each linked list comprises a head
element and a tail element, the head element corre-
sponding to a most recently used cache entry among all
cache entries accessed by a corresponding thread, and
the tail element corresponding to a least recently used
cache entry among all cache entries accessed by the
corresponding thread;
in response to the first thread accessing a cache entry
corresponding to an element of the second linked list of
elements, locking the element corresponding to the
accessed cache entry and neighboring elements that are
adjacent to the element corresponding to the accessed
cache entry in order to prevent another thread from
updating the locked elements, without locking any
other element;
in response to a cache eviction request, determining a
least recently used cache entry among the plurality of
cache entries based on values accessed from one or
more of the tail elements of the linked lists; and

evicting the determined least recently used cache entry by
populating the determined least recently used cache
entry with new data.
2. The method of claim 1, further comprising inserting the
element corresponding to the accessed cache entry to a head
of the first linked list of elements.
3. The method of claim 2, further comprising updating the
head of the first linked list with a timestamp of when the
corresponding cache entry was accessed by the first thread.
4. The method of claim 3, further comprising:
removing the element corresponding to the accessed
cache entry from the second linked list; and

re-linking the neighboring elements that were adjacent to
the removed elements on the second linked list and
unlocking the eclements that were adjacent to the
removed element in order to allow another thread to
update the unlocked elements.

5. The method of claim 1, wherein determining the least
recently used cache entry comprises selecting a tail element
which has a smallest value among one or more tail elements.

10

15

20

25

30

35

40

45

50

55

60

26
6. The method of claim 1, wherein each linked list of
elements corresponds to multiple threads that access one or
more cache entries of the plurality of cache entries.
7. The method of claim 1, further comprising:
in response to determining one or more linked list of
elements no longer correspond to any thread because
one or more threads have exited, determining the least
recently used cache entry among the plurality of cache
entries based on values accessed from the one or more
linked list of elements that no longer correspond to any
thread.
8. The method of claim 1, further comprising:
in response to determining one or more linked list of
elements no longer correspond to any thread because
one or more threads have exited, merging the one or
more linked list of elements that no longer correspond
to any thread with a linked list element that still
corresponds to an existing thread.
9. A non-transitory computer-readable storage medium
having computer code stored therein, which when executed
by a processor, cause the processor to perform operations
comprising:
maintaining a plurality of linked lists of elements, includ-
ing a first linked list of elements for a first thread and
a second linked list of elements for a second thread,
each linked list corresponding to one of a plurality of
threads accessing one or more cache entries of a
plurality of cache entries, each element of each linked
list corresponding to one of the plurality of cache
entries, wherein each linked list comprises a head
element and a tail element, the head element corre-
sponding to a most recently used cache entry among all
cache entries accessed by a corresponding thread, and
the tail element corresponding to a least recently used
cache entry among all cache entries accessed by the
corresponding thread;
in response to the first thread accessing a cache entry
corresponding to an element of the second linked list of
elements, locking the element corresponding to the
accessed cache entry and neighboring elements that are
adjacent to the element corresponding to the accessed
cache entry in order to prevent another thread from
updating the locked elements, without locking any
other element;
in response to a cache eviction request, determining a
least recently used cache entry among the plurality of
cache entries based on values accessed from one or
more of the tail elements of the linked lists; and

evicting the determined least recently used cache entry by
populating the determined least recently used cache
entry with new data.

10. The non-transitory computer-readable storage
medium of claim 9, further comprising inserting the element
corresponding to the accessed cache entry to a head of the
first linked list of elements.

11. The non-transitory computer-readable storage
medium of claim 10, further comprising updating the head
of the first linked list with a timestamp of when the corre-
sponding cache entry was accessed by the first thread.

12. The non-transitory computer-readable storage
medium of claim 11, further comprising:

removing the element corresponding to the accessed

cache entry from the second linked list; and
re-linking the neighboring elements that were adjacent to

the removed elements on the second linked list and

unlocking the elements that were adjacent to the

US 9,460,025 B1

27

removed element in order to allow another thread to
update the unlocked elements.

13. The non-transitory computer-readable storage
medium of claim 9, wherein determining the least recently
used cache entry comprises selecting a tail element which
has a smallest value among one or more tail elements.

14. The non-transitory computer-readable storage
medium of claim 9, wherein each linked list of elements
corresponds to multiple threads that access one or more
cache entries of the plurality of cache entries.

15. The non-transitory computer-readable
medium of claim 9, further comprising:

in response to determining one or more linked list of

elements no longer correspond to any thread because
one or more threads have exited, determining the least
recently used cache entry among the plurality of cache
entries based on values accessed from the one or more
linked list of elements that no longer correspond to any
thread.

16. The non-transitory computer-readable
medium of claim 9, further comprising:

in response to determining one or more linked list of

elements no longer correspond to any thread because
one or more threads have exited, merging the one or
more linked list of elements that no longer correspond
to any thread with a linked list element that still
corresponds to an existing thread.

17. A data processing system, comprising:

a set of one or more processors; and

a non-transitory machine-readable storage medium con-

taining code, which when executed by the set of one or

more processors, cause the data processing system to

maintain a plurality of linked lists of elements, includ-
ing a first linked list of elements for a first thread and
a second linked list of elements for a second thread,
each linked list corresponding to one of a plurality of
threads accessing one or more cache entries of a
plurality of cache entries, each element of each
linked list corresponding to one of the plurality of
cache entries, wherein each linked list comprises a
head element and a tail element, the head element
corresponding to a most recently used cache entry
among all cache entries accessed by a corresponding
thread, and the tail element corresponding to a least
recently used cache entry among all cache entries
accessed by the corresponding thread,

in response to the first thread accessing a cache entry
corresponding to an element of the second linked list
of elements, lock the element corresponding to the
accessed cache entry and neighboring elements that
are adjacent to the element corresponding to the
accessed cache entry in order to prevent another
thread from updating the locked elements, without
locking any other element;

in response to a cache eviction request, determine a
least recently used cache entry among the plurality of
cache entries based on values accessed from one or
more of the tail elements of the linked lists, and

storage

storage

28

evict the determined least recently used cache entry by
populating the determined least recently used cache
entry with new data.

18. The data processing system of claim 17, wherein the
5 non-transitory machine-readable storage medium further
contains code, which when executed by the set of one or
more processors, cause the data processing system to insert
the element corresponding to the accessed cache entry to a

head of the first linked list of elements.

19. The data processing system of claim 18, wherein the
non-transitory machine-readable storage medium further
contains code, which when executed by the set of one or
more processors, cause the data processing system to update
the head of the first linked list with a timestamp of when the
corresponding cache entry was accessed by the first thread.

20. The data processing system of claim 19, wherein the
non-transitory machine-readable storage medium further
contains code, which when executed by the set of one or
more processors, cause the data processing system to:

remove the element corresponding to the accessed cache

entry from the second linked list; and

re-link the neighboring elements that were adjacent to the

removed elements on the second linked list and unlock-
ing the elements that were adjacent to the removed
element in order to allow another thread to update the
unlocked elements.

21. The data processing system of claim 17, wherein
determining the least recently used cache entry comprises
the data processing system to select a tail element which has
a smallest value among one or more tail elements.

22. The data processing system of claim 17, wherein each
linked list of elements corresponds to multiple threads that
access one or more cache entries of the plurality of cache
entries.

23. The data processing system of claim 17, wherein the
non-transitory machine-readable storage medium further
contains code, which when executed by the set of one or
more processors, cause the data processing system to:

in response to determining one or more linked list of

elements no longer correspond to any thread because
one or more threads have exited, determine the least
recently used cache entry among the plurality of cache
entries based on values accessed from the one or more
linked list of elements that no longer correspond to any
thread.

24. The data processing system of claim 17, wherein the
non-transitory machine-readable storage medium further
contains code, which when executed by the set of one or
more processors, cause the data processing system to:

in response to determining one or more linked list of

elements no longer correspond to any thread because
one or more threads have exited, merge the one or more
linked list of elements that no longer correspond to any
thread with a linked list element that still corresponds
to an existing thread.

15

20

25

30

35

40

45

50

#* #* #* #* #*

